Abstract

We have purified nascent DNA molecules from Escherichia coli pulse-labeled with 5-bromo[6-3H]deoxyuridine by repeated chromatography on nitrocellulose and isopycnic centrifugation in CsCl. The nascent molecules were labeled with 32P either at their 5' ends using polynucleotide kinase or at their 3' ends using terminal transferase. Compared to the non-nascent DNA of normal density, the nascent dense DNA contained a higher proportion of molecules terminated at their 5' ends with ribonucleotides. Exposure of the dense DNA to alkali generated 5' OH termini quantitatively equivalent to the number of molecules bearing 5' ribonucleotides. Experiments designed (1) to detect structures at the 5' ends of phosphatase-treated nascent DNA molecules that caused them to be resistant to hydrolysis by spleen exonuclease or (2) to detect polypeptides that were associated covalently with small DNA molecules and could be iodinated with the Bolton-Hunter reagent did not yield positive results. We conclude that many, if not all, of the intermediates in E. coli DNA replication are initiated with one or more ribonucleotides. The nascent molecules are outnumbered by small non-nascent DNA molecules in the cell, many of which appear to become slightly longer when cells are pulsed with thymidine. Many of the non-nascent DNA molecules behave as if they were self-complementary or crosslinked.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call