Abstract

Recently, the performance of high temperature superconducting (HTS) bulks such as critical current density, size, and mechanical strength has been improved rapidly. So, various applications using HTS bulks such as motors, bearings and flywheels have been investigated by many research groups. A compact nuclear magnetic resonance (NMR) magnet is one of the new applications after a technique to enhance maximum trapped field of the HTS bulk more than 11.7 T (500 MHz 1H NMR frequency) has been developed. This new compact NMR magnet out of HTS bulks is cost-effective compared with conventional NMR magnets and then expected to be widely used in food and drug industry. In design and manufacture of the compact NMR magnets, spatial field homogeneity of the large trapped magnetic field in HTS bulk annuli is a crucial issue because the behavior of a trapped field is highly non-linear and, as a result, a technique to improve the field homogeneity such as active/passive shimming now becomes more challenging compared with that of the conventional counterparts. This paper presents the magnetic field distributions in single and three assembled HTS bulk annuli measured by a 3-axis and multi-arrayed Hall sensor under two different cryogenic environments: (1) in a bath of liquid nitrogen (LN 2) and (2) dry cooling by a cryocooler. The spatial homogeneity changes with various operating temperatures were investigated and the effect of critical current density enhancement by lowering the operating temperature on the field homogeneity improvement was discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call