Abstract

Tristetraprolin (TTP) and its two known mammalian family members are tandem CCCH zinc finger proteins that can bind to AU-rich elements (AREs) in cellular mRNAs and destabilize those transcripts, apparently by initiating their deadenylation. Previous studies have shown that the approximately 70-amino acid tandem zinc finger domain of TTP is required and sufficient for RNA binding, and that the integrity of both zinc fingers is also required. However, little is known about the kinetics or structure of the peptide-RNA interaction, in part because of difficulties in obtaining soluble recombinant protein or peptides. We characterized the binding of a synthetic 73-amino acid peptide from human TTP to the tumor necrosis factor (TNF) ARE by gel mobility shift analyses and fluorescence anisotropy experiments. Both types of studies yielded a peptide-RNA dissociation constant of approximately 10 nM. Surprisingly, we found that the "footprint" from the TNF ARE required for peptide binding was only approximately 9 bases and that two molecules of peptide could bind to probes containing as little as 19 bases. An identical recombinant peptide exhibited gel shift characteristics similar to those of the synthetic peptide. NMR analysis of the 15N-labeled recombinant peptide suggested that its first zinc finger was structured in solution but that the second was not. The titration of oligonucleotides representing 17, 13, and even 9 bases of the TNF ARE caused an essentially identical, dramatic shift of existing resonances, and the appearance of new resonances in the peptide spectra, so that all amino acids could be assigned. These data suggest that this TTP peptide-RNA complex is structured in solution and might be amenable to NMR structure determination.

Highlights

  • Tristetraprolin (TTP) and its two known mammalian family members are tandem CCCH zinc finger proteins that can bind to AU-rich elements (AREs) in cellular mRNAs and destabilize those transcripts, apparently by initiating their deadenylation

  • We found that an epitopetagged peptide containing 77 amino acids from the human TTP TZF domain could interact with ARE-containing RNA probes after expression in 293 cells [11]

  • Three oligonucleotides were used for NMR: a 17-mer, UUAUUUAUUUAUUAUUU, corresponding to bases 1341– 1357 of human tumor necrosis factor (TNF) mRNA (GenBank accession number NM_000594.2; identical to a segment of the mouse TNF mRNA, GenBank accession number X02611.1, bases 1309 –1325); a 13-mer derived from this 17-mer, UUAUUUAUUUAUU; and a 9-mer derived from this 13-mer, UUAUUUAUU

Read more

Summary

THE JOURNAL OF BIOLOGICAL CHEMISTRY

Vol 278, No 22, Issue of May 30, pp. 19947–19955, 2003 Printed in U.S.A. Characteristics of the Interaction of a Synthetic Human Tristetraprolin Tandem Zinc Finger Peptide with AU-rich Element-containing RNA Substrates*. The titration of oligonucleotides representing 17, 13, and even 9 bases of the TNF ARE caused an essentially identical, dramatic shift of existing resonances, and the appearance of new resonances in the peptide spectra, so that all amino acids could be assigned These data suggest that this TTP peptide-RNA complex is structured in solution and might be amenable to NMR structure determination. These studies have been frustrated to date by difficulties in obtaining recombinant TTP TZF peptide in soluble form To circumvent these difficulties, and to determine some of the biochemical characteristics of the TZF domain interaction with a class II ARE, we designed and synthesized a 73-amino acid peptide that can bind to ARE-containing RNA probes with high affinity, as determined by several types of assay. These data suggest that this peptide or a similar variant may be suitable for the ultimate structure determination of the TZF domain-RNA complex

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call