Abstract

Proteins and functional polyols are essential food ingredients coexisting in the food matrix, and therefore, interactions between them inevitably occur. In this study, the interaction mechanisms of xylitol (XY) with bovine milk β-lactoglobulin (β-LG) and β-casein (β-CN) were studied using multispectral techniques and molecular docking. It was found that XY strongly quenched the intrinsic fluorescence of β-LG and β-CN by static quenching. The values of the binding constants were KA(β-LG-XY)=3.369×104L/mol and KA(β-CN- XY)=7.821×104L/mol, indicating that the binding affinity of XY to β-CN was higher than that for β-LG. Hydrogen bonding and van der Waals forces played a major role in the interactions of XY with β-LG and β-CN, and both interactions were exothermic. Simultaneous fluorescence, three-dimensional fluorescence, and circular dichroism spectroscopy showed that binding of XY did not change the secondary structure of β-LG. However, XY interaction with β-CN led to the conversion of α-helices to random coils and structural loosening. In addition, molecular docking predicted the most likely binding sites of XY in both proteins and the interaction forces involved in binding, confirming the spectroscopic results. This study improves the understanding of the interactions of XY with β-LG and β-CN in functional dairy products and provides a theoretical basis for the addition of XY in a functional milk base.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call