Abstract

Measurements of the mean and fluctuating velocities have been obtained with pressure and hot-wire probes in the attached boundary layers and wakes of two airfoil models at a low Mach number. The first model is a conventional airfoil at zero incidence and the second an advanced supercritical airfoil at an angle of attack of 4°. The mean-flow and Reynolds-stress data and related quantities are presented with emphasis on the trailing-edge region. The results indicate that the flow around the conventional airfoil is a minor perturbation of a symmetric flat-plate flow with small wake curvature and weak viscous–inviscid interaction. The flow around the supercritical airfoil is in considerable contrast with strong streamwise pressure gradients, non-negligible normal pressure gradients, and large surface and streamline curvatures of the trailing-edge flow. The near wake is strongly curved and intense mixing occurs between the retarded upper-surface boundary layer and strongly accelerated lower-surface boundary layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call