Abstract

Defects induced by high-energy electrons in Si–SiO 2 structure have been studied by the optically stimulated electron emission (OSEE) method. Si–SiO 2 structures with oxide thickness of 100 nm are irradiated with 23 MeV electrons for different durations. It is shown that most of the defects created by electron irradiation at the interface and in the oxide bulk are vacancies like E′-centers. Most of the photoemission activity changes are observed during low doses electron irradiation. Some uncharged defects like diamagnetic oxygen-deficient centers are also observed, together with E′-centers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.