Abstract

4-Aminopyridine (4-AP) is suggested to improve symptomatology of spinal injury patients because it may facilitate neuromuscular transmission, spinal impulse flow and the operation of the locomotor central pattern generator (CPG). Since 4-AP can also induce repetitive discharges from dorsal root afferents, this phenomenon might interfere with sensory signals necessary to modulate CPG activity. Using electrophysiological recording from dorsal and ventral roots of the rat isolated spinal cord, we investigated 4-AP-evoked discharges and their relation with fictive locomotor patterns. On dorsal roots 4-AP (5–10 μM) induced sustained synchronous oscillations (3.3±0.8 s period) smaller than electrically evoked synaptic potentials, persistent after sectioning off the ventral region and preserved in an isolated dorsal quadrant, indicating their dorsal horn origin. 4-AP oscillations were blocked by tetrodotoxin, or 6-cyano-7-nitroquinoxaline-2,3-dione and d-amino-phosphonovalerate, or strychnine and bicuculline, suggesting they were network mediated via glutamatergic, glycinergic and GABAergic transmission. Isolated ventral horn areas could not generated 4-AP oscillations, although their intrinsic disinhibited bursting was accelerated by 4-AP. Thus, ventral horn areas contained 4-AP sensitive sites, yet lacked the network for 4-AP induced oscillations. Activation of fictive locomotion by either application of N-methyl- d-aspartate and serotonin or stimulus trains to a single dorsal root reversibly suppressed dorsal root oscillations induced by 4-AP. This suppression was due to depression of dorsal network activity rather than simple block of root discharges. Since dorsal root oscillations evoked by 4-AP were turned off when the fictive locomotor program was initiated, these discharges are unlikely to interfere with proprioceptive signals during locomotor training in spinal patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.