Abstract

AbstractIt is demonstrated that porous polysilicon (PPS) diode fabricated on the silicon substrate operates as efficient and stable surface-emitting cold cathode. A 1.5 pm of non-doped polysilicon layer is formed on n-type (100) silicon wafer and anodised in a solution of HF(50%): ethanol = 1:1 at a current density of 10 mA/cm2 for 30 seconds under illumination by a 500W tungsten lamp from a distance of 20 cm. Subsequently, PPS layer is oxidized in a rapid thermal oxidation(RTO) furnace for one hour at a temperature of 700°C. A semi-transparent thin Au film (about 10 nm thick) is deposited onto the PPS layer as a positive electrode and an ohmic contact is formed at the back of the silicon wafer as a negative electrode. When a positive bias is applied to the Au electrode in vacuum, the diode uniformly emits electrons. No electron emission is observed in the negatively biased region. Emission current is about 10−4 A/cm2 at 20V bias, and no fluctuation of emission current is observed as a function of time. Emission current is not affected by a surrounding pressure up to around 10 Pa. It is envisaged that mechanism of this emission is attributed to hot electron tunnelling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.