Abstract

The Sichuan-Tibet grid connection project is a national key project implemented in accordance with the developmental needs of Tibet and the living requirements of 700 thousand local residents. It is the first grid project with special high voltage that passes through eastern margin of the Tibetan Plateau. The ground deformation due to widely distributed landslides and debris flow in this area is the major concern to the safety of the project. The multi-temporal interferometry technique is applied to retrieve the surface deformation information using high resolution X-band SAR imagery. The time series of surface deformation is obtained through the sequential high spatial and temporal resolution TerraSAR images (20 scenes of X-band TerraSAR SLC images acquired from 5 January 2014 to 12 December 2014). The results have been correlated with the permafrost activities and intensive precipitation. They show that the study area is prone to slow to moderate ground motion with the range of −30 to +30 mm/year. Seasonal movement is observed due to the freeze-thaw cycle effect and intensive precipitation weather condition. Typical region analysis suggests that the deformation rate tends to increase dramatically during the late spring and late autumn while slightly during the winter time. The correlations of surface deformations with these two main trigger factors were further discussed. The deformation curves of persistent scatterers in the study area showing the distinct seasonal characteristics coincide well with the effect of freeze-thaw cycle and intensive precipitation. The movement occurring at late spring is dominated by the freeze-thaw cycle which is a common phenomenon in such a high-elevated area as the Tibetan Plateau. Intensive precipitation plays more important role in triggering landsides in the summer season. The combining effect of both factors results in fast slope movement in May. The results also suggest that the movement often occur at the middle to toe part of the slope where the combining effect of freeze-thaw cycle and precipitation plays an important role. Therefore the majority of transmission towers are not threatened significantly by geological hazards since they are located on the higher elevation which is beyond the boundary of slope movement. The comparison between field observations and the persistent scatterers interferometry (PSI) results reveals good agreement in obvious deformation accumulations. High uncertainty still exists due to issue of SAR imagery quality and the persistent scatterers interferometry technique. Nevertheless, this study provides an insight into understanding the characteristics of ground movement trend in the complicated eastern Tibet area.

Highlights

  • The Tibetan Plateau (TP), recognized as the third pole of Earth, is the world’s highest plateau, with an average altitude of over 4000 m

  • Active deforming areas are revealed by a map of average line of sight (LOS) deformation velocities (Figure 4)

  • The activity of landslides under gravity usually results in loose deposits accumulated at the feet of steep slopes

Read more

Summary

Introduction

The Tibetan Plateau (TP), recognized as the third pole of Earth, is the world’s highest plateau, with an average altitude of over 4000 m. The terrible weather, high altitude, steep terrain, lack of transport facilities and sparely distributed settlements result in the high cost of the construction of power transmission system and the restrictive coverage of power grid in the Tibetan Plateau. The Sichuan-Tibet grid connection project is the first special high voltage grid project constructed in the Tibetan Plateau, which aims to solve the electricity shortage problem in parts of eastern Tibet and western Sichuan province. The project consists of two grid lines. The 500 kv grid line connecting Xiangcheng County, Sichuan and Changdu City, Tibet is about 500 km long. The 220 kv grid line connecting Basu County, Tibet, and Jiangda County, Tibet is about 250 km long. The two grid lines intersect at Changdu City, Tibet (Figure 1)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.