Abstract

Submicron aerosols (SAs) emitted during wastewater treatment may harm the human circulation system, respiratory cells, and deep lungs. Despite this threat, SAs remain poorly understood. In this study, a laboratory simulation aerosol generator was manufactured, and the particle number size distributions, aerosol liquid water content (ALWC), and chemical and microbial composition of SAs from aeration were analyzed. Under stable aeration conditions, the unimodal SA size distribution ranged from 68 to 350 nm. The ALWC of peak size (170 nm) was 11–21 μg/m3. Na was the dominant major element in SAs with the concentration of 5.61 μg/m3. Total organic carbon accounted for 97% of the total carbon in the SAs. Arcobacter, Methanobrevibacter, and Fusarium were the dominant SA bacteria, archaea, and fungi, respectively, and a number of viruses were also detected. Thirty-two antibiotic resistant genes, and virulence factors of which 23% were offensive virulence factors, were detected in the SAs. The results predicted that 2% of the genes in SAs were directly related to human health. Thus, SAs may pose disproportionately high risks to human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call