Abstract
A drive and control method is put forward for a variable diameter capsule micro robot to screw forward in intestine using magnetic coupling between an inner actuator inside the robot and the rotational magnetic field generated by a rotating outer actuator. The structures of the outer and inner actuators are magnet cylinders with multiple magnetic poles in tegular shape alternating with dissimilar radial magnetization. An universal mathematical model of magnetic torque at eccentric state is established based on the equivalent magnetic charge method, and the characteristics of magnetic torque with respect to structural parameters of actuators are theoretically studied. Experiments show that the driving method features advantages such as powerful magnetic torque, high safety, reliability, etc. The driving ability of the variable diameter capsule micro robot is greatly improved by its automatic radial clearance compensation. The magnetic drive system has a promising prospect of medical applications in intestine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.