Abstract
This paper deals with a numerical model for the buckling and post-buckling analysis of single-wall carbon nanotubes. Reasons of efficiency lead to the choice of a simple molecular statics model, wherein binary, ternary and quaternary atomic interactions are accounted for and described using Morse and cosine potential functions. The equations of the model are discussed in depth and the parameters of the potential functions are justified in the light of a comparison with ab-initio results. Several case studies regarding zigzag and armchair tubes of different aspect ratios, under compression, bending and torsion, are addressed with the aim of investigating the efficacy of the model and the role of the quaternary interactions, in contexts of both global and local behaviours.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.