Abstract

The results of an experimental investigation on the effect of a vortex generator in the form of a mechanical tab placed at the nozzle exit on the evolution of jet and its decay are reported in this paper. Jets from a sonic nozzle with and without tabs operated at nozzle pressure ratios from 2 to 7 were studied. Tabs with two combinations of length-to-width ratio were investigated by keeping the blockage area constant. The tabs offered a blockage of 10.18% of the nozzle exit area. The centerline pitot pressure decay shows that for the tabbed jet a maximum core reduction of about 75% can be achieved at a nozzle pressure ratio (NPR) 7 compared to an uncontrolled jet. The shadowgraph pictures show that the tabs drastically weaken the shock structure in the jet core and disperse the supersonic zone of the flow making them occupy a greater zone of the flow field compared to the plain nozzle. This causes the waves to become weaker and the jet to spread faster. The tabs are found to shed counter-rotating vortices all along the edges, resulting in enhanced mixing. Isobaric contours reveal that the streamwise vortices cause an inward indentation of the entrained mass into the jet core and an outward ejection of core flow. To understand the distortion introduced by tabs on the jet cross-section and its growth leading to bifurcation of the jet, a surface coating visualization method was developed and employed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.