Abstract
A suprathermal halo population of electrons is ubiquitous in space plasmas, as evidence of their departure from thermal equilibrium even in the absence of anisotropies. The origin, properties, and implications of this population, however, are poorly known. We provide a comprehensive description of solar wind halo electrons in the ecliptic, contrasting their evolutions with heliospheric distance in the slow and fast wind streams. At relatively low distances less than 1 AU, the halo parameters show an anticorrelation with the solar wind speed, but this contrast decreases with increasing distance and may switch to a positive correlation beyond 1 AU. A less monotonic evolution is characteristic of the high-speed winds, in which halo electrons and their properties (e.g., number densities, temperature, plasma beta) exhibit a progressive enhancement already distinguishable at about 0.5 AU. At this point, magnetic focusing of electron strahls becomes weaker and may be counterbalanced by the interactions of electrons with wave fluctuations. This evolution of halo electrons between 0.5 AU and 3.0 AU in the fast winds complements previous results well, indicating a substantial reduction of the strahl and suggesting that significant fractions of strahl electrons and energy may be redistributed to the halo population. On the other hand, properties of halo electrons at low distances in the outer corona suggest a subcoronal origin and a direct implication in the overheating of coronal plasma via velocity filtration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.