Abstract

The horizontal component amplitudes of magnetograms recorded by ground-based observatories of the INTERMAGNET network have been used to analyze the global pattern variance of the solar diurnal variations. Those kinds of data present gaps in records and consequently we explore them via a time–frequency gapped wavelet algorithm. We propose a new approach to analyze magnetograms based on scale correlation. The results show that the magnetic records have a latitudinal dependence affected by the season of year and by the level of solar activity. We have found a disparity on the latitudinal response at Southern and Northern Hemispheres during solstices, which is expected due to the asymmetry of the Sq field. On the other hand at equinoxes, records from stations located at approximately the same latitude but at different longitudes presented peculiar dissimilarities. The achieved results suggest that quiet day patterns and the physical processes involved in their formation are strongly affected by the conductivity of the E-region, the geomagnetic field intensity and its configuration, and the thermospheric winds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call