Abstract

The study of soil organic carbon components in continuous cropping cotton fields in oases is helpful to reveal the change characteristics of the soil organic carbon stability mechanism in arid areas under the effects of man-land relationships. In this study, the contents of soil organic carbon, easily oxidized organic carbon, dissolved organic carbon, and microbial biomass carbon in cotton fields with different continuous cropping years (2 a, 5 a, 12 a, 20 a, and 35 a) were collected and analyzed by using space instead of the time series method. Through redundancy analysis, the relationship between soil organic carbon components and other soil physical and chemical factors was discussed. The results showed that:① continuous cropping for different years had a significant impact on the content of soil organic carbon components in the study area. The contents of soil organic carbon, easily oxidized organic carbon, dissolved organic carbon, and microbial biomass carbon in continuous cropping cotton fields for 12 a, 20 a, and 35 a were higher than those in continuous cropping cotton fields and wasteland for 2 a and 5 a. ω(soil organic carbon) reached the peak value (7.06 g·kg-1) in the cotton field in 20 a, which was 76.91% higher than that in the wasteland. The content of soil organic carbon decreased with the deepening of the soil layer. ② Based on the redundancy analysis of soil organic carbon content and soil environmental factors, the results showed that the content of soil organic carbon was positively correlated with total nitrogen, available phosphorus, and water content and negatively correlated with pH value and bulk density. The importance of soil environmental factors on the interpretation of soil organic carbon content was as follows:total N>available P>pH value>bulk density>water content>available K>total salt.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call