Abstract

Itraconazole (ITZ) is an anti-fungal agent generally used to treat cutaneous mycoses. For efficient delivery of ITZ to the skin tissues, an oil-in-water (O/W) cream formulation was developed. The O/W cream base was designed based on the solubility measurement of ITZ in various excipients. A physical mixture of the O/W cream base and ITZ was also prepared as a control formulation to evaluate the effects of the solubilized state of ITZ in cream base on the in vitro skin deposition behavior of ITZ. Polarized light microscopy and differential scanning calorimetry demonstrated that ITZ was fully solubilized in the O/W cream formulation. The O/W cream formulation exhibited considerably enhanced deposition of ITZ in the stratum corneum, epidermis, and dermis compared with that of the physical mixture, largely owing to its high solubilization capacity for ITZ. Therefore, the O/W cream formulation of ITZ developed in this study is promising for the treatment of cutaneous mycoses caused by fungi such as dermatophytes and yeasts.

Highlights

  • Itraconazole (ITZ) is a triazole structure-based anti-fungal agent that is generally used to treat cutaneous mycoses owing to its high activity against a broad spectrum of pathogenic fungi causing the disease, such as dermatophytes and yeasts [1]

  • Besides the avoidance of adverse effects of ITZ on the liver, the drug should be delivered to the skin tissues, to the stratum corneum, which is the outermost layer of the skin and the main target site for the treatment of cutaneous mycoses [6]

  • To overcome the limitations and disadvantages related to the current topical formulations applicable for ITZ, we explored oil-in-water (O/W) type cream formulations for the topical delivery of ITZ to the skin, into the stratum corneum

Read more

Summary

Introduction

Itraconazole (ITZ) is a triazole structure-based anti-fungal agent that is generally used to treat cutaneous mycoses owing to its high activity against a broad spectrum of pathogenic fungi causing the disease, such as dermatophytes and yeasts [1]. Systemic exposure to ITZ resulting from oral administration has been frequently reported to cause liver damage due to hepatocellular and cholestatic damage [4,5]. Besides the avoidance of adverse effects of ITZ on the liver, the drug should be delivered to the skin tissues, to the stratum corneum, which is the outermost layer of the skin and the main target site for the treatment of cutaneous mycoses [6]. Topical delivery systems for efficient delivery of ITZ to the stratum corneum are needed. The topical dosage forms of ITZ are rarely available on the market due largely to its extremely insoluble nature with aqueous solubility reported to be 1 ng/mL [7]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.