Abstract
Silicon nitrides, deposited by capacitively coupled plasma (CCP)-type plasma enhanced atomic layer deposition (PEALD), are generally applied to today’s nanoscale semiconductor devices, and are currently being investigated in terms of their potential applications in the context of flexible displays, etc. During the PEALD process, 13.56 MHz rf power is generally employed for the generation of reactive gas plasma. In this study, the effects of a higher plasma generation frequency of 162 MHz on both plasma and silicon nitride film characteristics are investigated for the purpose of silicon nitride PEALD, using bis(diethylamino)silane (BDEAS) as the silicon precursor, and N2 plasma as the reactant gas. The PEALD silicon nitride film deposited using the 162 MHz CCP exhibited improved film characteristics, such as reduced surface roughness, a lower carbon percentage, a higher N/Si ratio, a lower wet etch rate in a diluted HF solution, lower leakage current, and higher electric breakdown field, and more uniform step coverage of the silicon nitride film deposited in a high aspect ratio trench, as compared to silicon nitride PEALD using 13.56 MHz CCP. These improved PEALD silicon nitride film characteristics are believed to be related to the higher ion density, higher reactive gas dissociation, and lower ion bombardment energy to the substrate observed in N2 plasma with a 162 MHz CCP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.