Abstract

A microwave-absorbing structure is a multifunctional composite composed of lossy materials, to obtain optimal electromagnetic properties combined with structural load-bearing capability. Microwave energy-loss properties can be obtained by modifying the matrix with a lossy filler, or by using a reinforcing fiber with lossy characteristics. The silicon carbide fiber is a conventional semi-conductive fiber that can cause microwave-energy loss, and can comprise a composite material by using a general resin system without lossy additives. This study investigated the mechanical and electromagnetic properties of SiC/epoxy composites, and the performance of microwave-absorbing structures composed of the SiC/epoxy. The fiber volume fraction and tensile properties of a SiC/epoxy composite cured at 6.0 bar were measured. Electromagnetic properties of SiC/epoxy composites cured at different pressures from 7.0 bar to 3.5 bar were measured in addition. Single-slab and multi-slab absorbers were fabricated, and their performance was evaluated. The −10-dB bandwidth and the minimum return loss of the four-slab absorber were 3.4 GHz and −31.0 dB, respectively.An analysis of the SiC/epoxy-composite characteristics indicated that it had excellent workability and mechanical-property advantages, although the performance of the SiC/epoxy microwave absorber was ordinary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.