Abstract

This study investigated the impact of activated carbon, palm activated carbon, and zeolite on horse oil (HO) extracted from horse neck fat using supercritical fluid extraction with deodorant-untreated HO (CON) as a comparison. The yield and lipid oxidation of deodorant untreated HO (CON) were not significantly affected by the three deodorants. However, deodorant-treated HOs exhibited significantly elevated levels of α-linolenic acid (C18:3n3) and eicosenoic acid (C20:1n9) compared to CON (p<0.05), while other fatty acids remained consistent. Zeolite-purified HO demonstrated significantly lower levels of volatile organic compounds (VOCs) than other treatments (p<0.05). Remarkably, zeolite decreased the concentration of pentane, 2,3-dimethyl (gasoline odor), by over 90%, from 177.17 A.U. ×106 in CON to 15.91 A.U. ×106. Zeolite also effectively eliminates sec-butylamine (ammonia and fishy odor) as compared to other deodorant-treated HOs (p<0.05). Additionally, zeolite reduced VOCs associated with the fruity citrus flavor, such as nonanal, octanal, and D-limonene in HO (p<0.05). This study suggests that integrating zeolite in supercritical fluid extraction enhances HO purification by effectively eliminating undesirable VOCs, presenting a valuable approach for producing high-quality HO production in the cosmetic and functional food industries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.