Abstract

An in-depth understanding of the pre-peak mechanical damage and energy-evolution characteristics of typical hard-rock in a diversion tunnel under cyclic load is of great significance to promote the safe and efficient construction of the diversion tunnel and the stability of surrounding rock. To study the pre-peak mechanical characteristics and the competition mechanism between energy storage and energy dissipation of typical hard-rock in a diversion tunnel under cyclic loading-unloading, combined with the internal drilling and blasting excavation of the actual engineering rock mass and the external vehicle cyclic load environment of the diversion tunnel, the cyclic loadingunloading tests of typical granite and tuff in diversion tunnel were carried out. Based on the analysis principle of mechanics and energy, the strain variables, modulus variables, energy variables and damage variables of granite and tuff under cyclic loading-unloading test were defined. The cyclic mechanical properties and energyevolution characteristics of granite and tuff under pre-peak load were analyzed. The competition mechanism between pre-peak energy storage and pre-peak energy dissipation of granite and tuff and the evolution law of strain damage variable and energy damage variable were revealed. The selection principle of rock sample size and the limitation of the test scheme were further discussed. The study of the damage evolution of rocks close to failure (pre-peak stage) under cyclic load is helpful to better understand the damage and failure mechanism of rocks in practical engineering problems. Keywords: Diversion tunnel, Cyclic loading-unloading, Granite/Tuff, Blasting cyclic load, Energy evolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call