Abstract
The fabrication of polymeric single-mode Gaussian profile optical waveguides is described. We used poly(methyl methacrylate) and a mixture of two intermiscible monomers for the cladding and the core, respectively, of the waveguides. The cores of the waveguides were fabricated by with an argon-ion laser beam. The waveguides had single-mode Gaussian refractive-index profiles. By using such waveguides, we fabricated directional couplers for power coupling to the adjacent waveguides and also parallel waveguide arrays for preventing power coupling to adjacent waveguides for use in interconnect chips. We analyzed the characteristics of these couplers by using the coupled-mode theory and compared the results with those obtained with the beam propagation method. Experimental results showed good correlation with the theoretical values. We designed optical bus arrays for interconnect chips, considering the variation of normalized frequency V, the power penalty, and the dimensions of the waveguides and the separation between them. The number of waveguides in the bus array increased with increasing V. For a known value of V, a waveguide's density increases with a decrease of its dimensions. The theoretical maximum number of waveguides is ~1490/cm and ~846/cm for 2 mum x 2 mum and 4 mum x 4 mum single-mode waveguides, respectively, to satisfy a 1-dB power penalty criterion at bit-error rate of 10(-9). We fabricated interconnect bus arrays with fifteen 4 mum x 4 mum waveguides for a 3-cm coupling length, and the experimental results were verified to be in good agreement with the theoretical values.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.