Abstract

Pollutants emission, meteorological conditions, secondary formation, and pollutants transport are the main reasons for air pollution. A comprehensive air pollution analysis was conducted from the above four aspects in the autumn–winter seasons of 2017–2018 and 2018–2019 at Xingtai, China. In addition, the relationship between PM2.5 and O3 was also studied from the aspects of secondary formation and meteorological conditions to find the rules of cooperative management of PM2.5 and O3 combined pollution. Taking measures of concentrated and clean heating and controlling biomass burning could make the concentrations of EC, K+ and SO42− decrease. The variation trends of PM2.5 and O3 concentration in the autumn–winter season of Xingtai were different, and with the increase in secondary formation effects, the concentration of O3 decreased. Furthermore, the key meteorological conditions that affected O3 and PM2.5 formation were temperature and relative humidity, respectively. The relationships of NOR (nitrate oxidation rate) and SOR (sulfate oxidation rate) against temperature presented a “U” shape, suggesting that gas-phase oxidation and gas–solid-phase oxidation were all suppressed at a temperature of around 4 °C. The cities located in the east had more pollutant transporting effects during the pollution processes of Xingtai, and the main transport routes of O3 and PM2.5 were not all the same.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.