Abstract

Oxidative pyrolysis of pine wood was studied by thermogravimetric analysis (TGA) coupled with mass spectrometer (MS) and differential scanning calorimetry (DSC) methods. The effects of oxygen concentration on pyrolysis behavior, carbon oxide production and heat properties were investigated. Several parameters were defined to evaluate the oxygen influence. It was found that oxygen dramatically promotes the oxidative degradation and char oxidation rate. The reactivity index was found to be proportional to the oxygen concentration, which suggested that oxidative degradation reactions were under increasingly kinetic control in elevated oxygen concentration environments. Carbon oxides evolution properties were investigated. There are two releasing peaks in MS curves for oxidative condition comparing with one peak under inert condition. They are related with oxidative degradation and char oxidation, respectively. Both total amounts and rates of carbon oxides emission were found to increase with oxygen concentration. The cumulative emission ratio of CO to CO2 first decreases then increases with oxygen concentration with 10% as turning point. It may be caused by different oxygen diffusion behaviors with variable oxygen concentrations. The absolute reaction heat value of oxidative pyrolysis (−7.23MJkg−1, 5% O2) is much larger than that of inert condition (+0.28MJkg−1). Increasing of oxygen concentration results in an increase of heat emission. Comparing with pine wood low heat value, the net heat emission efficiencies under different oxygen concentrations (5%, 10%, 15%, 21%) are 39.73%, 44.84%, 68.90% and 78.41%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.