Abstract
AbstractThis work presents a photocatalysis‐based method to treat and purify air because of its broad applicability to common, oxidizable, air contaminants. The effect of oxygen content, temperature, water vapor, and 2‐propanol concentration on the TiO2 surface was investigated. The rate of 2‐propanol decomposition increased with increasing the oxygen content, but was reduced at temperatures higher than 100°C. When water vapor concentration was in the range of 10–355 mmol m−3, the rate of 2‐propanol decomposition was proportional to the water content. However, an opposite result was observed at a higher concentration of water vapor. 2‐Propanol was photooxidized to acetone, and eventually to carbon dioxide and water. The kinetic model of 2‐propanol photooxidation was successfully developed by the competitive Langmuir–Hinshelwood rate form, incorporating the inhibition effect coming from the formation of acetone. Copyright © 2004 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Chemical Technology & Biotechnology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.