Abstract

BackgroundIt is not fully explained why some active tuberculosis patients show negative interferon-γ release assays (IGRAs). In this study, we tried to explore associations of IGRAs with the characteristics of peripheral Vγ2Vδ2 T cells and their functions of producing cytokines.Methods32 pulmonary tuberculosis patients were enrolled and divided into two groups according to their IGRAs results: 16 with IGRA-negative as test group and 16 with IGRA-positive as control group. Chest X-rays and T-SPOT.TB tests were performed and the severity of the lung lesions was scored. The amount of Vγ2Vδ2T cell and their expression levels of the apoptosis-related membrane surface molecule Fas and FasL in peripheral blood were analyzed by flow cytometry, and the function of secreting cytokines (IFN-γ, TNF-α and IL-17A) of Vγ2Vδ2 T cell were determined by intracellular cytokine staining.ResultsThe IGRA-negative TB patients had more lesion severity scores and displayed reduced peripheral blood Vγ2Vδ2 T cell counts (p = 0.009) as well as higher Fas and FasL expression in peripheral blood Vγ2Vδ2 T cells (p = 0.043, 0.026). A high lesion severity score was correlated with a decreased Vδ2+ T cell number and increased Vγ2Vδ2 T cells Fas/FasL expression leve in the peripheral blood (p = 0.00, P < 0.01). The function of secreting cytokines was slightly impaired in IGRA-negative TB patients (p = 0.402). There is no significant differences in expression levels of Fas and FasL in CD4+ T cells (p = 0.224, 0.287) or CD8+ T cells (p = 0.184, 0.067) between test and control groups.ConclusionCompared with IGRA-positive TB patients, the IGRA-negative TB patients had more lesion severity scores, the number of Vγ2Vδ2 T cells decreased and the function of secreting cytokines impaired. In addition, we suggest that increased expression of Fas/FasL triggers Vγ2Vδ2 T cell apoptosis.

Highlights

  • It is not fully explained why some active tuberculosis patients show negative interferon-γ release assays (IGRAs)

  • Some studies using intracellular staining for cytokines suggest that M. tuberculosis (MTB)-activated CD4+ and γδ T-cell secreted large amounts of IFN-γ. γδ T cells have been shown to be more potent producers of IFN-γ than CD4+ T cells [14, 15]. γδ T cells, which account for 1–5% of all peripheral blood T cells [16,17,18] constitute a specific subtype of T cells expressing γδ T cell receptors (TCR) and

  • Demographic profiles of subjects To explore the relation between IGRAs and Vγ2Vδ2 T cells, we have enrolled two groups of pulmonary tuberculosis patients with IGRAs positive and negative, respectively

Read more

Summary

Introduction

It is not fully explained why some active tuberculosis patients show negative interferon-γ release assays (IGRAs). Interferon-γ release assays (IGRAs) based on the level of IFN-γ secreted by T cells in response to M. tuberculosis (MTB) specific antigens including early secreted antigenic target (ESAT-6) and culture filtrate protein (CFP-10) has higher specificity and sensitivity than the conventional tuberculin skin test (TST) [3, 4]. These specific antigens are present in the genome of MTB and absent in. Some active pulmonary tuberculosis patients exhibit an decreased ability of Vγ2Vδ2+ T cells to generate IFN-γ in response to phosphor-antigens [27, 28]. We have found that anergic pulmonary tuberculosis is accompanied by reduced Vγ2Vδ2 T cell percentage, and elevated Vγ2Vδ2 cell FasL expression [32]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.