Abstract

Pericardial fibrocalcification (PF) is a prominent feature of human pericardial pathology, including constrictive pericarditis and, to a lesser extent, degenerated autologous pericardial substitutes. However, the role of pericardial interstitial cells (PICs) in the pathogenesis of PF has yet to be established. Using a combination of histology and immunohistochemistry, we showed that the critical cellular event in PF in situ was the transdifferentiation of PICs into myofibroblasts/osteoblasts and that the percentage of myofibroblasts/osteoblasts correlated positively with the severity of PF. In vitro studies demonstrated that PICs, similar to mesenchymal stem cells, had the potential to differentiate along adipogenic, osteogenic, chondrogenic or myogenic lineages. However, PICs exhibited a more limited self-renewal capacity and a lower expression of Oct4 (POU5F1) and Kruppel-like transcription factor Klf4, underwent earlier senescence and spontaneously transdifferentiated into myofibroblasts/osteoblasts. Quantitative-real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) confirmed that the mRNA levels of α-smooth muscle actin (α-SMA), alkaline phosphatase (ALP), core-binding factor α1/runt-related transcription factor2 (Cbfa1/Runx2), transforming growth factor (TGF)-β1 and bone morphogenetic protein (BMP)-2 were upregulated as the passage number increased. The mRNA level of platelet-derived growth factor (PDGF)-AA was also significantly upregulated with higher levels at passage 3. Ectopic expression of Oct4 and Klf4 enhanced the colony formation of PICs and selectively impaired induction of genes involved in transdifferentiation into myofibroblasts/osteoblasts (α-SMA, ALP, Cbfa1/Runx2, PDGF-AA and BMP-2). These data, while offering new insights into the biology of PICs, reinforce the central role of these cells in cell-mediated PF and may assist in future strategies to treat fibrocalcific pericardial diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.