Abstract

The atomization process of a liquid jet in a divergent cavity-based combustor was investigated experimentally using high-speed photography and schlieren techniques under a Mach number 2.0 supersonic crossflow. Gas-liquid flow field was studied at different divergent angles and injection schemes. It is found that complex wave structures exist in the divergent cavity-based combustor. The spray field can be divided into three distinct zones: surface wave-dominated breakup zone, rapid atomization zone and cavity mixing zone. A dimensionless spray factor is defined to describe the concentration of spray inside the cavity qualitatively. As a result, it is revealed that for the large divergent angle cavity, the injection scheme near the upstream inlet has a higher penetration depth but a lower spray distribution, where the injection scheme near the cavity has a more spray distribution. For the small divergent angle cavity, the injection scheme near the upstream inlet also has a higher penetration depth and the injection scheme near the start point of the divergent section has a more sufficient spray distribution. The small divergent angle cavity-based combustor with the upstream wall transverse injection is an optimized injection scheme to improve both penetration and spray distribution inside the cavity. Finally, a penetration depth formula is proposed to explain the spray and distribution behaviors in the divergent cavity-based combustor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.