Abstract
Particles in vehicle exhaust plumes in underground parking lots have adverse health effects due to the enclosed environment in which they are released and the temperature difference between the tailpipe and ambient environment; at the same time, particle coagulation might be obvious near the tailpipe in an underground parking lot. In the present study, airflow and temperature fields were calculated using the Realizable k-ε model, and the Eulerian particle transport model was selected in the numerical simulation of particle concentration dispersion. Polydisperse thermal coagulation due to Brownian collisions was employed to calculate the particle coagulation. The results show that particle coagulation rate and half-time were significant within 1 m from the tailpipe. The variations in the particle coagulation rate and half-time were similar, but their directions were opposite. Air exhaust time was nearly four times longer than averaged half-time and 40 times longer than minimum half-time. The peak particle diameter increased approximately 1.43 times due to coagulation. A double particle concentration at the tailpipe caused the fourfold rise in the particle coagulation rate in the distance ranging less than 1 m from the tailpipe. An increase in exhaust velocity at the tailpipe could shorten the obvious range of particle coagulation along the centerline of the tailpipe from 1 to 0.8 m in the study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.