Abstract

Abstract. Aerosols and ozone have significant influences on air qualities, human health, and climate changes. To further understand the characteristics and interactions among different urban air pollutants in the west Yangtze River Delta (YRD) region, continuous measurements of low-layer atmospheric particles and trace gases have been performed at an urban site in Nanjing from September 2016 to February 2017 in this study. In the urban area of the west YRD, the mean PM10 and O3 concentrations are 86.3 µg m−3 and 37.7 ppb, respectively, with significant seasonal and diurnal variations. Particles, which are dominated by fine aerosols, are relatively scattering. And most of their optical properties have similar variations to the aerosol concentrations. Results also show that the west YRD could still suffer severe air pollution, although the seasonal mean aerosol concentrations have decreased in recent years. Even in cold seasons, O3 could exceed the National Ambient Air Quality Standards for about 40 days during the sampling period. Most of polluted episodes are caused by local and subregional emissions. A case study for a typical O3 and PM2.5 episode in December 2016 demonstrates that the episode was generally associated with regional transport and a stable weather system. Air pollutants were mostly transported from the western areas with high emissions, as well as with an anticyclone and high-pressure system in this region. Correlation analysis reveals that the interactions between O3 and PM are complex, with a combination of inhibition and promotion under different conditions. The inhibition effect might result from the reduction of photolysis frequency near the surface due to aerosols in addition to their positive correlations with precursors, while the promotion effect is from the formation of secondary aerosols under high concentrations of oxidants and solar radiation. However, the interaction between O3 and BC shows an inhibiting effect due to its chemical stability. This also indicated a VOC-sensitive regime for photochemical production of O3 in this region. This study further improves insight into the characteristics and interactions of main pollutants and may contribute to the improvement of the simulation and prediction of aerosols and gases in the urban area of the YRD.

Highlights

  • Particles, including black carbon (BC), PM2.5, and PM10; trace gases, such as carbon monoxide (CO), ozone (O3), nitric oxide, and nitrogen dioxide (NOx); and total reactive nitrogen (NOy, which includes NOx, aerosol nitrates (NO−3 ), nitric acid (HNO3), N2O5, peroxyacetyl nitrate (PAN), and various nitrogen-containing organic compounds.), are important components in the troposphere because of their impacts on human health, the biosphere, and climate changes (e.g., Chameides et al, 1999a, b; Jerrett et al, 2009; Allen et al, 2012)

  • BC concentration was relatively low, it was extremely high in particular periods, such as in mid-November, early and late December, early January, and mid-to-late February, suggesting occurrences of substantial BC pollution events

  • Particles (BC and PM) and trace gases (O3 and related precursors) in polluted seasons are investigated based on continuous measurements of concentrations and optical properties in the urban area of Nanjing

Read more

Summary

Introduction

Particles, including black carbon (BC), PM2.5, and PM10; trace gases, such as carbon monoxide (CO), ozone (O3), nitric oxide, and nitrogen dioxide (NOx); and total reactive nitrogen (NOy, which includes NOx, aerosol nitrates (NO−3 ), nitric acid (HNO3), N2O5, peroxyacetyl nitrate (PAN), and various nitrogen-containing organic compounds.), are important components in the troposphere because of their impacts on human health, the biosphere, and climate changes (e.g., Chameides et al, 1999a, b; Jerrett et al, 2009; Allen et al, 2012). High levels of particle concentrations are mainly distributed in the Beijing–Tianjin–Hebei area (BTH), Yangtze River Delta (YRD), and Pearl River Delta (PRD) regions (e.g., Zhang et al, 2008, 2012; Zhang et al, 2015), along with the rapid economic development. These regions consistently have the highest emissions of anthropogenic precursors (e.g., Wang et al, 2015, 2009; Ding et al, 2013b; Zheng et al, 2010), which have led to severe region-wide air pollution. Large gaps and uncertainties remain in the knowledge of characteristics of regional particles and O3 pollution and its mitigation strategies due to the complexity of main sources, interaction between different aerosols, and changing meteorology field

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call