Abstract
The relative influence of oil type and temperature on the characteristics of oil droplets stabilized by mineral particles (oil–mineral aggregates––OMA) was studied in the laboratory. OMA were generated by shaking eight different oils under two temperatures with natural mineral fines in seawater at a pre-defined energy level. Shape, mean and maximum sizes, size distribution and concentration of oil droplets forming negatively buoyant OMA were measured by image analysis using epi-fluorescence microscopy. Results showed that oil droplets are, on average, spherical regardless of oil composition and temperature. Non-spherical “elongated” oil droplets form more at 20 °C than at 0 °C. Droplet shape and size were not correlated to oil viscosity. The concentration of oil droplets decreased rapidly with oil viscosity, temperature and asphaltenes–resins content (ARC). When normalized with ARC, mass concentration of oil droplets correlates well with oil viscosity, regardless of experimental temperature. A model was proposed to calculate mass of oil dispersed by OMA as a function of oil viscosity and ARC. Size distributions of oil droplets follow similar trends, but their magnitudes depend on oil type and temperature. A function was derived that describes all the data when size distributions were presented in a normalized form N/ N t= f( D/ D 50), where N is number of droplets of diameter D, N t is the total number of droplets and D 50 the mean size of the droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.