Abstract

By analyzing dinucleotide position-frequency data of yeast nucleosome-bound DNA sequences, dinucleotide periodicities of core DNA sequences were investigated. Within frequency domains, weakly bound dinucleotides (AA, AT, and the combinations AA-TT-TA and AA-TT-TA-AT) present doublet peaks in a periodicity range of 10–11bp, and strongly bound dinucleotides present a single peak. A time-frequency analysis, based on wavelet transformation, indicated that weakly bound dinucleotides of core DNA sequences were spaced smaller (∼10.3bp) at the two ends, with larger (∼11.1bp) spacing in the middle section. The finding was supported by DNA curvature and was prevalent in all core DNA sequences. Therefore, three approaches were developed to predict nucleosome positions. After analyzing a 2200-bp DNA sequence, results indicated that the predictions were feasible; areas near protein-DNA binding sites resulted in periodicity profiles with irregular signals. The effects of five dinucleotide patterns were evaluated, indicating that the AA-TT pattern exhibited better performance. A chromosome-scale prediction demonstrated that periodicity profiles perform better than previously described, with up to 59% accuracy. Based on predictions, nucleosome distributions near the beginning and end of open reading frames were analyzed. Results indicated that the majority of open reading frames’ start and end sites were occupied by nucleosomes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call