Abstract
This research aims to develop kernel GNG, a kernelized version of the growing neural gas (GNG) algorithm, and to investigate the features of the networks generated by the kernel GNG. The GNG is an unsupervised artificial neural network that can transform a dataset into an undirected graph, thereby extracting the features of the dataset as a graph. The GNG is widely used in vector quantization, clustering, and 3D graphics. Kernel methods are often used to map a dataset to feature space, with support vector machines being the most prominent application. This paper introduces the kernel GNG approach and explores the characteristics of the networks generated by kernel GNG. Five kernels, including Gaussian, Laplacian, Cauchy, inverse multiquadric, and log kernels, are used in this study. The results of this study show that the average degree and the average clustering coefficient decrease as the kernel parameter increases for Gaussian, Laplacian, Cauchy, and IMQ kernels. If we avoid more edges and a higher clustering coefficient (or more triangles), the kernel GNG with a larger value of the parameter will be more appropriate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Artificial Intelligence & Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.