Abstract

This study analyzed the functional and structural characteristics of cone, hemisphere, and modified sculptured contact fibers (1,000 microns) after 1 hour of continuous Nd:YAG laser application. Continuous laser application was performed on live porcine tissue using 20 watts of power. The fiber's appearance under a microscope as well as the power output was recorded after 0, 5, 10, 20, 30, 45, and 60 minutes of continuous laser application. (N = 3 for each fiber). At time 0, all fibers transmitted from 49 to 56% of the initial 20 watts (W); power transmission decreased to less than 9% relative power transmission after 20 minutes and then plateaued. The fibers exhibited severe distortion and carbonization of the surface where laser had been applied with evidence of quartz melting and shattering after only 10 minutes. By 30 minutes of laser application, all three fibers were fractured and essentially indistinguishable from one another; moreover, the fibers exhibited similar power transmission, and cutting and coagulation activity, as determined by a panel of independent, double-blinded surgeons. These data lead us to conclude that 1) Nd:YAG contact laser effects result from thermal heating of the fiber tip with subsequent tissue injury, 2) the unique structural configuration of the fiber's sculptured tip are lost after several minutes of laser application without appreciable change in functional integrity, and 3) fibers may be manually fractured allowing for multiple uses without significant sacrifice of power transmission or surgical utility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call