Abstract

Novel carbonaceous nanomaterials such as carbon nanotubes and fullerenes have many beneficial characteristics as industrial materials, but exposure to these nanomaterials also poses health risks. As part of an exposure assessment, we characterized the following carbonaceous nanomaterials, using an aerosol carbon monitor: nine samples of multi-walled carbon nanotubes (MWCNTs), a sample of single-walled carbon nanotubes (SWCNTs), a standard sample of diesel exhaust particles (DEPs), and an ambient particulate matter (APM). The amounts of elemental carbon (EC) determined by the monitor coincided with the mass of MWCNTs calibrated by a microbalance. The carbonaceous nanomaterials were oxidized in three steps of oven temperatures (550, 700 and 920°C) in this method. The portion of oxidized carbon at each temperature depended on the sample characteristic. We used the monitor to analyze the aerosol samples collected in five stages by a Sioutas cascade impactor (SCI), which collects size-segregated airborne particles having aerodynamic diameters from 6.6μm to less than 0.25μm. As MWCNTs aggregate/agglomerate easily, the size was of a good parameter to distinguish the MWCNTs from other materials. Two-dimensional mapping by size and oxidized temperature suggested the origin of the carbonaceous aerosol samples. Based on the results, we reanalyzed our previous data obtained at a factory manufacturing MWCNTs. The characteristics of workplace samples by particle size and carbon analysis were similar to those of MWCNT aerosol particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.