Abstract

The Matlab program has been utilized in this study to examine the absorption spectral properties of a one-dimensional photonic crystal (1DPCs) comprising two composite metamaterials through near IR wavelengths. The composite metamaterials are designed from Ag of a gyroidal geometry (layer A) and hyperbolic metamaterial (layer B). Therefore, the introduced design is labeled as [ABn]m\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${[A{B}^{n}]}^{m}$$\\end{document} with n and m to define the periodicity of the hyperbolic metamaterial and the whole structure, respectively. The numerical findings have been introduced in the vicinity of the effective medium theory, transfer matrix method and the Drude model as well. In this regard, the numerical results demonstrate the appearance of some spectral absorption bands ranging from 0.7 µm to 3 µm for both TM and TE polarizations. Additionally, these bands are almost insensitive to the changes in the angle of incidence. Interestingly, we have considered the role played by some parameters such as the permittivities and thicknesses of both layers on the introduced absorption bands. Finally, we believe that the investigated results could be promising through many applications such as wavelength selective absorbers, solar energy, and smart windows as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call