Abstract

The effect of pressurizing speed of low pressure casting on mold filling and mechanical properties of A356 alloy was studied. The mold filling behavior was calculated by two phase flow model using VOF (Volume of Fluid) method. In order to evaluate the accuracy of simulated results, the real mold filling process observed by X-ray radiography was compared. The results show that during mold filling the gate velocity first increased dramatically, then kept unchanged under relatively low pressurizing speed, or increased slowly under relatively high pressurizing speed. High gate velocity causes melt falling back under gravity with high speed. The falling velocity and the resultant relative rotating vortex are the main causes of oxide film entrainment in low pressure casting. The mechanical properties of the as-cast A356 alloy were measured by four-point bend test. Weibull probability plots were used to assess the fracture mechanisms under different pressurizing speeds. The results obtained in this paper illuminate on designing suitable pressurizing speed for mold filling in low pressure casting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call