Abstract
The resonant modes found in a modified single-defect two-dimensional photonic crystal slab structure are theoretically and experimentally studied. There exist several modes in the band gap: doubly degenerate (dipole and quadrupole modes) and nondegenerate (hexapole and monopole modes). Among them, the monopole mode specifically attracts our interest because of its nondegeneracy, good coupling with the gain medium, and existence of the intensity minimum at the center of the cavity, which would open up the chance for the electrically driven single-defect laser. The nondegenerate hexapole mode, a special type of whispering gallery mode, has a very high quality factor. We have fabricated two types of modified single-defect lasers, i.e., air-based free-standing and SiO/sub 2/-based epoxy-bonded structures. Rich lasing actions in both structures are experimentally observed under optically pulsed pumping conditions at room temperature. In the free-standing slab structure, photons are strongly confined in vertical direction, and the lasing operations of all resonant modes with low thresholds are obtained. Especially, the nondegenerate monopole-mode laser is confirmed to have a large spontaneous emission factor of >0.06, estimated by analyzing rate equations. In the SiO/sub 2/-based slab structure, thermal properties are improved at the expense of vertical losses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.