Abstract

This paper presents the results of an experimental investigation into the flow characteristics of miniature short-tube orifices of a type commonly used for fuel injection. From measurements of differential pressure and volumetric discharge it is shown that these devices are susceptible to a cavitation-induced instability phenomenon known as hydraulic flip. It was found that this instability is limited to orifices of length less than fourteen diameters and occurs at a critical pressure differential which varies as a function of the orifice l/d ratio and contraction parameter β. In addition, the performance of the device is examined in terms of the head loss characteristics and it is shown that the mechanisms associated with hydraulic flip have a significant effect on the efficiency of discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.