Abstract

The developing nervous system has proved to be a very powerful tool to analyze how MT are involved in basic biological processes such as cell proliferation, cell migration, cell shaping, and transport. A better knowledge of the basic events occurring during neurogenesis also affords us the possibility of establishing the basis of experiments and trying to solve unanswered and important questions. Despite the considerable value of cell culture, we need to use more discrete regions of the developing brain in situ in order to analyze the MT and their modifications into cells developing their "natural" environment. One major problem remains the question of the mode of assembly and disassembly, that is, the behavior of MT in living cells. Dynamic instability and/or treadmilling are accurate interpretations of the dynamics of MT at least in vitro or in cell culture, but we do need more information on what happens in situ and in vitro. One of the main tasks of cell biologists is to devise satisfactory tests to approach this fundamental question. In this view, pharmacological manipulation of embryos treated in whole-embryo culture systems might be a possible way. Microtubules are ubiquitous cell components. However, the extensive heterogeneity of MAP and tubulin in the CNS confers on the neurons a wide range of capabilities of assembly of these proteins and suggests that the neuron has a unique potential of a relation between MT composition and cell function. We have seen that each major event during neurogenesis is related to a specific series of modifications of the MT components. It remains to be determined if there is a causal or just a correlative relationship between the appearance of specific isotypes and the occurrence of specific events and/or functions. We have also to determine the exact spatial and temporal relations among the different isotypes of MT proteins, tubulin, and MAP. Is there a close correspondence between a tubulin and a MAP isotype? Can the appearance of one isotype of tubulin influence the appearance and the assembly of a specific MAP, or vice versa? Recent results obtained with the Tyr- and Glu-MT shed light on these questions and suggest a whole series of possibilities for cells to modulate the structure, behavior, and function of MT in specific domains of the neuron or in specific regions of the brain, by only a minute modification of the molecule of tubulin. Microtubule protein heterogeneity raises also a number of questions.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.