Abstract

Marine Heatwaves (MHWs) are prolonged, discrete, and anomalously warm events, which have recently gained global attention due to their far-reaching effects and reported impacts. Although intensive studies have been carried out at global and regional scales, these events remained understudied in the Philippines – a country with high marine biodiversity. The Philippines is highly vulnerable to the impacts of these extreme events as it lies in the western boundary of the Pacific that is considered as a hotspot for MHWs. The present study used multi-year climatic sea surface temperature (SST) record to detect MHWs in the Philippines. The detected events were then characterized using the standardized metrics. Linear trend analysis was conducted to determine the magnitude and direction of the change of the MHW metrics over time. Decadal trend revealed that MHWs in the Philippines significantly increased from seven MHWs in the 1980s to 37 MHWs in the last decade. Moreover, increased duration was remarkable in 2020 with 276 MHW days. MHW frequency and duration were increasing at a rate almost twice as its neighboring waters. Intensities did not significantly increase with time, but the highest SST anomaly is associated with El Niño Southern Oscillation. Furthermore, the eastern and western region of the Philippines is vulnerable to MHWs, but hotspots are mostly confined in the West Philippine Sea and western tropical Pacific. An in-depth investigation of the drivers of MHWs is recommended to understand the physical mechanisms of the development of these extreme thermal events in the Philippine seas. The findings have significant implications for coastal marine resource management, highlighting the need for adaptive management strategies and increased monitoring and research efforts to mitigate the impacts of MHWs on marine ecosystems and local economies in the Philippines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call