Abstract
Under the influence of space weather, abnormal disturbances in the ionosphere will distort the ionosphere model seriously and affect the global navigation satellite system negatively. This study analyzes the ionospheric activity characteristics and the ionospheric model performance in low latitude during a strong geomagnetic storm from 7 to 9 September 2017. The research goals are to determine the abnormal behavior of the ionosphere during the geomagnetic storm and to refine the ionosphere model in the low latitude. In the experiment, the vertical total electron content (VTEC) peak value at low latitudes caused by this geomagnetic storm was significantly higher than that on the geomagnetic quiet day, and the VTEC peak value increased by approximately 75%. In the main phase of the geomagnetic storm, the degree of VTEC variation with longitude is significantly higher than that of the geomagnetic quiet day. The VTEC variation trend in the northern hemisphere is more severe than that in the southern hemisphere. In the region where VTEC decreases with longitude, the VTEC in the northern hemisphere is higher than that in the southern hemisphere on the same longitude at low latitudes, and this phenomenon is not significantly affected by the geomagnetic disturbance of the recovery phase. During the geomagnetic storm, the daily minimum value of VTEC at different latitudes was basically the same, approximately 5 TECU, indicating that the nighttime VTEC of the ionosphere in low latitudes was weakly affected by latitude and geomagnetic storms. Geomagnetic disturbances during geomagnetic storms will lead to anomalous features of the “Fountain effect” in the ionosphere at low latitudes. In addition, this geomagnetic storm event caused the accuracy of spherical harmonics (SH), polynomial, and ICE models to decrease by 7.12%, 27.87%, and 48.56%, respectively, and caused serious distortion, which is negative VTEC values fitted by the polynomial model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.