Abstract

Acoustic signals can travel thousands of kilometers in seawater, and the characteristics of long-range sound propagation are different from short range propagation. This paper is based on a long-range underwater acoustic experiment data carried in the western Pacific Ocean, whose farthest propagation distance is nearly 2000km. The ocean environment information and vertical line array information are carefully processed. We analyze the attenuation in the seawater of long-distance acoustic propagation and multi-path arrival structure characteristics under the complete acoustic channel environment of the ocean. In terms of the attenuation law of long-distance propagation energy, with the increase of propagation distance, the effect of seawater absorption on the attenuation of sound energy becomes prominent, and the selection of absorption coefficient is very important for accurate prediction of sound field energy. Absorption in seawater of low frequency signals is small, and the transmission loss of acoustic signal with 100Hz center frequency only increases by about 6dB when the propagation distance is from 1000km to 2000km. In terms of multi-path arrival structure characteristics of deep-sea acoustic channel for long-distance sound propagation, the thermocline sound velocity profile in the experimental sea area has higher sound speed, which makes the number of eigenrays reaching the receiving point more and the multi-path arrival structure more complex. The arrival structure formed by sea surface reflected eigenrays is in the earlier position of the overall arrival structure and has relatively strong energy. Due to the influence of subtropical water over the northwest Pacific Ocean on the sound speed profile, the time of some eigenrays arriving at the receiving point is earlier, and the length of multi-way arrival structure on the time axis is prolonged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.