Abstract
Local delivery agents (LDAs) are widely used in peri-implantitis treatments. The aim of this study was to identify LDAs remaining on the dental implant surfaces and to analyze the components of these residues after applying various cleaning methods. Implants were prepared with a sand-blasted, large-grit, acid-etched surface. Four kinds of LDAs were applied on the implant surfaces: chlorhexidine gel (group 2), tetracycline solution (group 3), and 2 kinds of minocycline hydrochloride agents (groups 4 and 5). Group 1 received normal saline as a control. Two cleaning methods were applied for different durations as follows: (1) running distilled water for 10 seconds (subgroup A), 5 minutes (subgroup B), and 15 minutes (subgroup C); and (2) water spray of a dental-unit chair for 10 seconds (subgroup D) and 5 minutes (subgroup E). Scanning electron microscopy and energy-dispersive x-ray spectroscopy were used to analyze the surface morphology and residue components for all implants. The amount of LDA removed from the implant surfaces in groups 1, 2, 3, and 5 increased with the cleaning duration and pressure. However, Minocline remained coated on the implant surfaces in group 4 under all cleaning conditions. Minocline could not be cleaned off well by water due to its hydrophobicity. Therefore, directly using this agent on implant surfaces with peri-implantitis should be carefully considered. The presence of LDA residues without drug efficacies on implant surfaces might interfere with reosseointegration and act as a reservoir of microorganisms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.