Abstract

An experimental study was conducted to identify the effect of viscosity on the characteristics of liquid sheets formed by a splash plate nozzle. Various mixtures of corn syrup and water are used to obtain viscosities in the range 1–170 mPa.s. Four different splash plates with nozzle diameters of 0.5, 0.75, 1, and 2 mm, with a constant plate angle of 55° were tested. Liquid sheets formed under various operating conditions were directly visualized. The sheet atomization process for the range of parameters studied here is governed by two different mechanisms: Rayleigh–Plateau (R–P) and Rayleigh–Taylor (R–T) instabilities. R–P occurs at the rim and R–T occurs on the thin sheet. The rim instability can be laminar or turbulent, depending on the jet Reynolds number. The R–T instability of the sheet is observed at the outer edges of the radially spreading sheet, where the sheet is the thinnest. It can also occur inside the sheet, due to formation of holes and ruptures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.