Abstract
Transparent conductive oxides such as indium tin oxide (ITO) are interesting materials due to their wide-band gaps, high visible light transmittance, high infrared reflectance, high electrical conductivity, hardness and chemical inertness. ITO films were fabricated on soda lime glass substrates by using high-intensity pulsed ion beam (HIPIB) technique. The as-deposited films comprised of partially crystallized In 2O 3 and after annealing at 500 °C for 1 h the film changed to polycrystalline phase. After annealing carrier concentration and Hall mobility increased while specific resistance and sheet resistance decreased quickly; and this trend was also observed when film thickness increased up to 300 nm for the post-annealed samples. Further increase in thickness of the film changed the electrical properties slightly. Atomic force microscopy (AFM) revealed that roughness decreased after 500 °C annealing for 1 h in air, except for the film of 65 nm thick. The thickness of the film which relates to the carrier concentration and mobility, degree of crystallization, size of the grain, and connections among grains in film are main factors to determine film’s electrical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.