Abstract
Dendritic cells (DCs) recognize and respond to microbial structures using pattern recognition receptors, including Toll-like receptors (TLRs). In the intestine, DCs are pivotal in tolerance induction and direct the differentiation of T cells. We aimed to identify changes in intestinal DCs that may underlie the dysregulated immune response to enteric bacteria that occurs in patients with inflammatory bowel disease (IBD). DCs were identified in freshly isolated lamina propria mononuclear cells by multicolor flow cytometry in patients with IBD and controls. Expression of TLR2, TLR4, and the activation/maturation marker CD40 was assessed by cell surface labeling. Production of cytokines (interleukin [IL]-12, IL-6, and IL-10) was assessed in the absence of exogenous stimulation by intracellular staining of permeabilized cells. In healthy controls, few intestinal DCs expressed TLR2 or TLR4, in contrast to blood DCs. DC expression of both TLRs was significantly enhanced in Crohn's disease and ulcerative colitis. DCs from inflamed tissue of patients with Crohn's disease expressed significantly higher levels of the maturation/activation marker CD40. Elevated levels of CD40 on DCs were decreased after treating patients with anti-tumor necrosis factor alpha. In Crohn's disease, but not ulcerative colitis, more colonic DCs produced IL-12 and IL-6. The number of IL-10-producing DCs did not differ significantly between patients with IBD and controls. In IBD, DCs are activated, their expression of microbial recognition receptors is up-regulated, and more DCs produce pathologically relevant cytokines. Intestinal DCs are likely to be key initiators or perpetuators of the inflammatory response that characterizes IBD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.