Abstract

Internal solitary waves (ISWs) with features such as large amplitude, short period, and fast speed have great influence on underwater thermohaline structure, nutrient transport, and acoustic signal propagation. The characteristics of ISWs in hotspot areas have been revealed by satellite images combined with mooring observation. However, the ISWs in the Timor Sea, which is located in the outflow of the ITF, have not been studied yet and the characteristics are unrevealed. In this study, by employing the Synthetic Aperture Radar (SAR) images taken by the Sentinel-1 satellite from 2017 to 2022, the temporal and spatial distribution characteristics of ISWs in the Timor Sea are analyzed. The results show that most of ISWs appear in Bonaparte basin and its vicinity. The average wavelength of the ISWs is 248 m, and most of the wave lengths are less than 400 m. The peak line of ISWs is longer in deeper water. The underwater structures of two typical ISWs are reconstructed based on the Korteweg–de Vries (KdV) equation combined with mooring observation. This shows that, compared with the two-layer model, the continuous layered model is more suitable for reconstructing the underwater structures of ISWs. Further analysis shows that both the rough topography and the spring-neap tides contribute to the generation of ISWs in the Timor Sea. This study fills a gap in knowledge of ISWs in regional seas, such as the Timor Sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call