Abstract

Abstract To reveal how aircraft affects the internal flow of the ejector nozzle, we have constructed three model types in this article. These include the model of SR-71 aircraft, the model that only contains ejector nozzle with third auxiliary valve, and the model that integrates the previous two. The results showed that in the transonic regime (M a = 1.2), the third auxiliary flow mainly stems from the boundary layer of the aircraft body. Indeed, a large-scale flow separation phenomenon near the third auxiliary door may require a more nuanced description. The mainstream flow is always in an overexpansion state and results in a Mach plate structure at the exit of the nozzle. However, after integration, the rates of the third auxiliary and the secondary flow are reduced by 18.15% and 5.26%, respectively. Meanwhile, the mainstream flow demonstrates higher overexpansion levels, the position of the Mach plate further downstream changes, and the thrust coefficient decreases by 1.75%. It is worthwhile noting that a strong pressure gradient occurs in the circumferential direction near the connecting structure, which induces lateral flow. This lateral flow breaks away from the wall under the reverse pressure gradient of the nozzle, thus forming three vortex pairs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call