Abstract

The latest generation of GPS satellites, termed Block IIF, provides a new L5 signal. Multi-frequency signals open new prospects for precise positioning and fast ambiguity resolution and have become the trend in Global Navigation Satellite System (GNSS) development. However, a new type of inter-frequency clock bias (IFCB), i.e., the difference between the current clock products computed with L1/L2 and the satellite clocks computed with L1/L5, was noticed. Consequently, the L1/L2 clock products cannot be used for L1/L5 precise point positioning (PPP). In order to solve this issue, the IFCB should be estimated with a high accuracy. Datasets collected at 129 globally distributed Multi-GNSS Experiment (MGEX) stations from 2015 are employed to investigate the IFCB. The results indicate that the IFCB is satellite dependent and varies with the relative sun---spacecraft---earth geometry. Other factors, however, may also contribute to the IFCB variations according to the harmonic analysis of the single-day IFCB time series. In addition, the results show that the IFCB exhibits periodic signal with a notable period of 43,080 s and the peak-to-peak amplitude is 0.023---0.269 m. After considering a time lag of 240 s, the average cross-correlation coefficient between the IFCB series of two consecutive days is 0.943, and the prediction accuracy of IFCB is 0.006 m. A triple-frequency PPP model that takes the IFCB into account is proposed. When using 3-h datasets, the positioning accuracy of triple-frequency PPP can be improved by 19, 13 and 21 % compared with the L1/L2-based PPP in the east, north and up directions, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.